![[personal profile]](https://www.dreamwidth.org/img/silk/identity/user.png)
PERSONAL BEST: Ready to Exercise? Check Your Watch
By GINA KOLATA, The New York Times, December 10, 2009
MY friend Jen Davis and I often run together in the morning because it can be easier to fit in a run before work than after. But we always thought we ran better in the evening.
Then I accidentally discovered something weird. I took a spinning class one Thursday night, and my heart rate, measured by a monitor strapped around my chest, soared. I don’t usually use a heart-rate monitor, but with stationary bikes, heart rate is pretty much the only way to know how hard you are working. And that night, my high heart rate told me it really was a tough workout.
The next morning I did a workout in my garage on a trainer — a device that holds a road bike, turning it into a stationary bike and yet allowing you to use its gears. My heart rate was about 15 beats a minute lower than it had been the night before. It seemed like a pitiful workout.
So the next night I got on the trainer again. I had the same playlist (I use music to set my cadence). I used the same gears for each song. And during the hourlong workout, my average heart rate and my maximum heart rate were about 15 beats a minute higher than they’d been the morning before.
I tried again the next morning. My heart rate was low. Intrigued, I tried my experiment for a week, alternating between early morning and early evening workouts. I got really sick of that playlist, but I wanted to control every variable.
And the pattern persisted: high heart rate at night, low in the morning for the identical workout. Once I even tried the workout in midday — that time, my heart rate was in between.
Could it be that I actually was a more efficient athlete in the morning, doing the same work but with less effort, as measured by a lower heart rate?
Jen reminded me that we’d seen the heart-rate effect last year but had not appreciated it. I had a stress fracture and was confined to pool running, which involves sprinting in the deep end of a pool. Your feet never touch the bottom. It was hard to gauge how hard we were working, so Jen and I wore heart rate monitors, just as we do in spinning classes.
We did the pool workouts together, and neither of us got our heart rates as high as we wanted in the morning. Evenings were fine, though. We thought we were just sluggish in the morning.
I also asked some friends who use heart rate monitors if they’d noticed anything like what I’d experienced.
Tara Martin, a triathlete, said she could never get her heart rate up in the morning.
Richard Friedman, a swimmer, said his heart rate was always lower in the morning. His swim team does the same workout in the morning as in the evening, and he swims it just as fast. He had assumed that somehow he was just not putting in the same effort early in the day. “Still,” he said, “I’m pretty energetic all the time.”
I asked Dr. William Haskell, an exercise researcher and emeritus professor of medicine at Stanford, if I’d stumbled on a known fact about heart rates. But he was baffled. Maybe I didn’t have caffeine in the morning? So I tried taking NoDoz before the next morning workout. It made no difference.
Dr. William Roberts, a former president of the American College of Sports Medicine and a family physician at the University of Minnesota, said it was a “tough question.” He added, “I do not have a good physiologic explanation for the phenomenon you are describing.”
But, it turns out, a small group of researchers has studied the question of exercise performance and time of day, even doing studies of heart rates. And not only are performances better in the late afternoon and early evening, but, contrary to what exercise physiologists would predict, heart rates are also higher for the same effort.
One recent study, by the late Thomas Reilly and his colleagues at the Research Institute for Sport and Exercise Sciences at Liverpool John Moores University in England, found that people’s maximum heart rates and sub-maximal heart rates were lower in the morning but that their perception of how hard they were working was the same in the morning as it was later in the day.
Dr. Reilly and his colleague Jim Waterhouse, in a review published this year, also noted that athletes’ best performances, including world records, were typically set in the late afternoon or early evening.
Greg Atkinson, also at Liverpool John Moores University, said that some researchers, noticing that heart rates during exercise were lower in the morning, reasoned the way I did — that people must be more efficient in the morning. It would mean that exercise was easier in the morning. Of course, it seemed harder to me, but I could have been deluding myself. Not really, Dr. Atkinson said. It actually is harder to exercise in the morning.
“Most components (strength, power, speed) of athletic performance are worst in the early hours of the morning,” he wrote in an e-mail message. “Ratings of perceived exertion during exercise have generally been found to be highest in the early morning.”
If you exercise later in the day, your muscles are more flexible and stronger and your heart and lungs are more efficient, said Michael H. Smolensky, an expert in chronobiology, the study of the body clock.
“Is a heart rate of 140 in the morning indicative of the same level of workout cost as in the afternoon?” asked Dr. Smolensky, a visiting professor at the University of Texas Health Sciences Center in Houston.
“I would say no,” he added. “Exercise physiologists say you should be able to perform at the same level with a heart rate of 140 in the morning as in the afternoon or early evening. But chronobiologists say your capacity to generate and tolerate a higher heart rate is better later in the day.”
“In the afternoon and evening,” Dr. Smolensky said, “you are in a different biological state.”
But, he added, all this applies to people who are regular exercisers, who work out vigorously three or more times a week. People who are not regular exercisers, Dr. Smolensky said, put much more strain on their hearts in the morning, making their heart rates higher then.
In fact, Dr. Smolensky added, people at risk for a heart attack should plan their workouts for late afternoon or early evening.
But if you are used to regular exercise, is it better to train in the early evening?
“I really don’t know the answer,” Dr. Smolensky said.
“My personal approach is to train when your biological efficiency is greatest, which means late afternoon or early evening for most people,” he said. “Others say if you train when your biological efficiency is least you will get a harder workout.”
Some elite athletes prefer morning workouts for reasons that have nothing to do with research studies.
Deena Kastor, who holds the American marathon record, said her former coach and mentor, Joe Vigil, insisted on morning workouts. He told her that there was more fluid between the vertebrae of the spine after a night in bed, Ms. Kastor said. And, she said, “fluid made your spine more forgiving and more able to absorb the pounding of running.” She noted that she had been running in the morning for the last 13 years “with very little injury.”
But when people compete, if, for example, they want a personal best time, they might want to seek out one of the few events that start late in the day. Or, even better, it might make sense for endurance events, like marathons, to start in the afternoon instead of the morning, when they almost always are held. Maybe they could be held later in the year, to avoid afternoon heat.
Dr. Smolensky agreed.
“Most marathons start early under the guise that it’s cooler then,” he said. “That needs to be looked at.”
Q & A: Odor Eaters
By C. CLAIBORNE RAY, The New York Times, December 8, 2009
Q. How does stainless steel remove the odor of garlic or onion from your hands?
A. There are plenty of anecdotal reports that such odors are killed by washing your hands with a commercially produced piece of “stainless soap” or just a handy stainless steel object like a pot or a sink. There are also chemical explanations for how it might work. And then there are those who say it does not work at all. What there does not seem to be is a published scientific study of any size to prove or disprove the efficacy of the method.
A theoretical mechanism for the cure is that sulfur-rich compounds in garlic and onions may interact with ions from a renewable layer of chromium oxide on the surface of a stainless steel object, the same layer that helps it resist corrosion. One theory is that this interaction somehow blocks the sulfur compounds from interacting with the chemicals in the air that ordinarily produce odors. Another is that the water involved in washing the hands does the same thing, whether stainless steel is involved or not.
Bob Wolke, a professor emeritus of chemistry at the University of Pittsburgh, was asked by National Public Radio to test the method. He said it did not work. However, his study, of exactly one stainless sample, is far from conclusive. Differing compositions of various stainless steels might account for that single failure. Why not try some at home?
BASICS: The Circular Logic of the Universe
By NATALIE ANGIER, The New York Times, December 8, 2009
CIRCLING my way not long ago through the Vasily Kandinsky show now on display in the suitably spiral setting of the Guggenheim Museum, I came to one of the Russian master’s most illustrious, if misleadingly named, paintings: “Several Circles.”
Those “several” circles, I saw, were more like three dozen, and every one of them seemed to be rising from the canvas, buoyed by the shrewdly exuberant juxtapositioning of their different colors, sizes and apparent translucencies. I learned that, at around the time Kandinsky painted the work, in 1926, he had begun collecting scientific encyclopedias and journals; and as I stared at the canvas, a big, stupid smile plastered on my face, I thought of yeast cells budding, or a haloed blue sun and its candied satellite crew, or life itself escaping the careless primordial stew.
I also learned of Kandinsky’s growing love affair with the circle. The circle, he wrote, is “the most modest form, but asserts itself unconditionally.” It is “simultaneously stable and unstable,” “loud and soft,” “a single tension that carries countless tensions within it.” Kandinsky loved the circle so much that it finally supplanted in his visual imagination the primacy long claimed by an emblem of his Russian boyhood, the horse.
Quirkily enough, the artist’s life followed a circular form: He was born in December 1866, and he died the same month in 1944. This being December, I’d like to honor Kandinsky through his favorite geometry, by celebrating the circle and giving a cheer for the sphere. Life as we know it must be lived in the round, and the natural world abounds in circular objects at every scale we can scan. Let a heavenly body get big enough for gravity to weigh in, and you will have yourself a ball. Stars are giant, usually symmetrical balls of radiant gas, while the definition of both a planet like Jupiter and a plutoid like Pluto is a celestial object orbiting a star that is itself massive enough to be largely round.
On a more down-to-earth level, eyeballs live up to their name by being as round as marbles, and, like Jonathan Swift’s ditty about fleas upon fleas, those soulful orbs are inscribed with circular irises that in turn are pierced by circular pupils. Or think of the curved human breast and its bull’s-eye areola and nipple.
Our eggs and those of many other species are not egg-shaped at all but spherical, and when you see human eggs under a microscope they look like tranquil suns with Kandinsky coronas behind them. Raindrops start life in the clouds not with the pear-shaped contours of a cartoon teardrop, but as liquid globes, aggregates of water molecules that have condensed around specks of dust or salt and then mutually clung themselves into the rounded path of least resistance. Only as the raindrops fall do they lose their symmetry, their bottoms often flattening out while their tops stay rounded, a shape some have likened to a hamburger bun.
Sometimes roundness is purely a matter of physics. “The shape of any object represents the balance of two opposing forces,” explained Larry S. Liebovitch of the Center for Complex Systems and Brain Sciences at Florida Atlantic University. “You get things that are round when those forces are isotropic, that is, felt equally in all directions.”
In a star, gravity is pulling the mass of gas inward toward a central point, while pressure is pushing the gas outward, and the two competing forces reach a dynamic détente — “simultaneously stable and unstable,” you might say — in the form of a sphere. For a planet like Earth, gravity tugs the mostly molten rock in toward the core, but the rocks and their hostile electrons push back with equal vehemence. Plutoids are also sufficiently massive for gravity to overcome the stubbornness of rock and smooth out their personal lumps, although they may not be the gravitationally dominant bodies in their neighborhood
In precipitating clouds, water droplets are exceptionally sticky, as the lightly positive end of one water molecule seeks the lightly negative end of another. But, again, mutually hostile electrons put a limit on molecular intimacy, and the compromise conformation is shaped like a ball. “A sphere is the most compact way for an object to form itself,” said Denis Dutton, an evolutionary theorist at the University of Canterbury in New Zealand.
A sphere is also tough. For a given surface area, it’s stronger than virtually any other shape. If you want to make a secure container using the least amount of material, Dr. Liebovitch said, make that container round. “That’s why, when you cook a frankfurter, it always splits in the long direction,” he said, rather than along its circumference. The curved part has the tensile strength of a sphere, the long axis that of a rectangle: no contest.
The reliability of bubble wrap may help explain some of the round objects found among the living, where the shapes of body parts are assumed to have some relation to their purpose. Eggs are a valuable commodity in nature, and if a round package is the safest option, by all means, make them caviar round. Among many birds, of course, eggs are oval rather than round, a trait that biologists attribute to both the arduous passage the egg makes through the avian oviduct, and the fact that oval eggs roll in a circle rather than a straight line and thus are less likely to fall out of a nest.
Yet scientists admit that they don’t always understand the evolutionary pressures that sculpture a given carbon-based shape.
While studying the cornea at Columbia University College of Physicians and Surgeons, Dr. Liebovitch became curious about why eyeballs are round. “It seemed like their most salient feature,” he said. He explored the options. To aid in focusing? But only a small region of the retina is involved in focusing, he said, and the whole spherical casing seems superfluous to the optical needs of that foveal patch. To enable the eye to roll easily in the socket and dart this way and that? But birds and other animals with fixed eyes still have bulging round eyeballs. “It’s not really clear what the reason is,” he said.
And for speculative verve, nothing beats the assortment of hypotheses that have been put forth to explain the roundness of the human female breast. It’s a buttock mimic. It’s a convenient place to store fat for hard times. It’s a fertility signal, a youth signal, a health signal, a wealth symbol. Large breasts emphasize the woman’s comparatively small waist, which is really what men are interested in. As for me, I’m waiting for somebody to explain why a man’s well-developed bicep looks like a wandering breast.
Whatever the prompt, our round eyes are drawn to round things. Jeremy M. Wolfe of Harvard Medical School and his colleagues found that curvature was a basic feature we used while making a visual search. Maybe we are looking for faces, a new chance to schmooze.
Studying rhesus monkeys, Doris Tsao of the California Institute of Technology and her colleagues identified a set of brain cells that responded strongly to images of faces, monkey and otherwise. The only other sort of visual stimulus that aroused those face tracing neurons, Dr. Tsao said, were round objects — clocks, apples and the like. She suspects the results would be similar for humans. We make a fetish of faces. “If you have a round object with two spots in the middle,” she said, “that instantly attracts your attention.”
Or maybe the circle beckons not for its resemblance to human face but as a mark of human art. Dr. Dutton, author of “The Art Instinct,” pointed out that perfect shapes were exceedingly rare in nature. “Take a look at a billiard ball,” he said. “It’s impossible to imagine that nature threw that one up.” We are predisposed to recognize “human artifacture,” he said, and roundness can be a mark of our handiwork. When nature does play the meticulous Michelangelo, we are astonished.
“People come to see the Moeraki boulders of New Zealand,” he said, “and ooh and aah because they’re so amazingly spherical.”
Artists in turn have used the circle as shorthand for the divine: in mandalas, rose windows, the lotus pad of the Buddha, the halos of Christian saints. For Kandinsky, said Tracey Bashkoff, who curated the Guggenheim exhibition, the circle was part of a “cosmic language” and a link to a grander, more spiritual plane. A round of applause! We’ve looped back to Kandinsky again.

By GINA KOLATA, The New York Times, December 10, 2009
MY friend Jen Davis and I often run together in the morning because it can be easier to fit in a run before work than after. But we always thought we ran better in the evening.
Then I accidentally discovered something weird. I took a spinning class one Thursday night, and my heart rate, measured by a monitor strapped around my chest, soared. I don’t usually use a heart-rate monitor, but with stationary bikes, heart rate is pretty much the only way to know how hard you are working. And that night, my high heart rate told me it really was a tough workout.
The next morning I did a workout in my garage on a trainer — a device that holds a road bike, turning it into a stationary bike and yet allowing you to use its gears. My heart rate was about 15 beats a minute lower than it had been the night before. It seemed like a pitiful workout.
So the next night I got on the trainer again. I had the same playlist (I use music to set my cadence). I used the same gears for each song. And during the hourlong workout, my average heart rate and my maximum heart rate were about 15 beats a minute higher than they’d been the morning before.
I tried again the next morning. My heart rate was low. Intrigued, I tried my experiment for a week, alternating between early morning and early evening workouts. I got really sick of that playlist, but I wanted to control every variable.
And the pattern persisted: high heart rate at night, low in the morning for the identical workout. Once I even tried the workout in midday — that time, my heart rate was in between.
Could it be that I actually was a more efficient athlete in the morning, doing the same work but with less effort, as measured by a lower heart rate?
Jen reminded me that we’d seen the heart-rate effect last year but had not appreciated it. I had a stress fracture and was confined to pool running, which involves sprinting in the deep end of a pool. Your feet never touch the bottom. It was hard to gauge how hard we were working, so Jen and I wore heart rate monitors, just as we do in spinning classes.
We did the pool workouts together, and neither of us got our heart rates as high as we wanted in the morning. Evenings were fine, though. We thought we were just sluggish in the morning.
I also asked some friends who use heart rate monitors if they’d noticed anything like what I’d experienced.
Tara Martin, a triathlete, said she could never get her heart rate up in the morning.
Richard Friedman, a swimmer, said his heart rate was always lower in the morning. His swim team does the same workout in the morning as in the evening, and he swims it just as fast. He had assumed that somehow he was just not putting in the same effort early in the day. “Still,” he said, “I’m pretty energetic all the time.”
I asked Dr. William Haskell, an exercise researcher and emeritus professor of medicine at Stanford, if I’d stumbled on a known fact about heart rates. But he was baffled. Maybe I didn’t have caffeine in the morning? So I tried taking NoDoz before the next morning workout. It made no difference.
Dr. William Roberts, a former president of the American College of Sports Medicine and a family physician at the University of Minnesota, said it was a “tough question.” He added, “I do not have a good physiologic explanation for the phenomenon you are describing.”
But, it turns out, a small group of researchers has studied the question of exercise performance and time of day, even doing studies of heart rates. And not only are performances better in the late afternoon and early evening, but, contrary to what exercise physiologists would predict, heart rates are also higher for the same effort.
One recent study, by the late Thomas Reilly and his colleagues at the Research Institute for Sport and Exercise Sciences at Liverpool John Moores University in England, found that people’s maximum heart rates and sub-maximal heart rates were lower in the morning but that their perception of how hard they were working was the same in the morning as it was later in the day.
Dr. Reilly and his colleague Jim Waterhouse, in a review published this year, also noted that athletes’ best performances, including world records, were typically set in the late afternoon or early evening.
Greg Atkinson, also at Liverpool John Moores University, said that some researchers, noticing that heart rates during exercise were lower in the morning, reasoned the way I did — that people must be more efficient in the morning. It would mean that exercise was easier in the morning. Of course, it seemed harder to me, but I could have been deluding myself. Not really, Dr. Atkinson said. It actually is harder to exercise in the morning.
“Most components (strength, power, speed) of athletic performance are worst in the early hours of the morning,” he wrote in an e-mail message. “Ratings of perceived exertion during exercise have generally been found to be highest in the early morning.”
If you exercise later in the day, your muscles are more flexible and stronger and your heart and lungs are more efficient, said Michael H. Smolensky, an expert in chronobiology, the study of the body clock.
“Is a heart rate of 140 in the morning indicative of the same level of workout cost as in the afternoon?” asked Dr. Smolensky, a visiting professor at the University of Texas Health Sciences Center in Houston.
“I would say no,” he added. “Exercise physiologists say you should be able to perform at the same level with a heart rate of 140 in the morning as in the afternoon or early evening. But chronobiologists say your capacity to generate and tolerate a higher heart rate is better later in the day.”
“In the afternoon and evening,” Dr. Smolensky said, “you are in a different biological state.”
But, he added, all this applies to people who are regular exercisers, who work out vigorously three or more times a week. People who are not regular exercisers, Dr. Smolensky said, put much more strain on their hearts in the morning, making their heart rates higher then.
In fact, Dr. Smolensky added, people at risk for a heart attack should plan their workouts for late afternoon or early evening.
But if you are used to regular exercise, is it better to train in the early evening?
“I really don’t know the answer,” Dr. Smolensky said.
“My personal approach is to train when your biological efficiency is greatest, which means late afternoon or early evening for most people,” he said. “Others say if you train when your biological efficiency is least you will get a harder workout.”
Some elite athletes prefer morning workouts for reasons that have nothing to do with research studies.
Deena Kastor, who holds the American marathon record, said her former coach and mentor, Joe Vigil, insisted on morning workouts. He told her that there was more fluid between the vertebrae of the spine after a night in bed, Ms. Kastor said. And, she said, “fluid made your spine more forgiving and more able to absorb the pounding of running.” She noted that she had been running in the morning for the last 13 years “with very little injury.”
But when people compete, if, for example, they want a personal best time, they might want to seek out one of the few events that start late in the day. Or, even better, it might make sense for endurance events, like marathons, to start in the afternoon instead of the morning, when they almost always are held. Maybe they could be held later in the year, to avoid afternoon heat.
Dr. Smolensky agreed.
“Most marathons start early under the guise that it’s cooler then,” he said. “That needs to be looked at.”
Q & A: Odor Eaters
By C. CLAIBORNE RAY, The New York Times, December 8, 2009
Q. How does stainless steel remove the odor of garlic or onion from your hands?
A. There are plenty of anecdotal reports that such odors are killed by washing your hands with a commercially produced piece of “stainless soap” or just a handy stainless steel object like a pot or a sink. There are also chemical explanations for how it might work. And then there are those who say it does not work at all. What there does not seem to be is a published scientific study of any size to prove or disprove the efficacy of the method.
A theoretical mechanism for the cure is that sulfur-rich compounds in garlic and onions may interact with ions from a renewable layer of chromium oxide on the surface of a stainless steel object, the same layer that helps it resist corrosion. One theory is that this interaction somehow blocks the sulfur compounds from interacting with the chemicals in the air that ordinarily produce odors. Another is that the water involved in washing the hands does the same thing, whether stainless steel is involved or not.
Bob Wolke, a professor emeritus of chemistry at the University of Pittsburgh, was asked by National Public Radio to test the method. He said it did not work. However, his study, of exactly one stainless sample, is far from conclusive. Differing compositions of various stainless steels might account for that single failure. Why not try some at home?
BASICS: The Circular Logic of the Universe
By NATALIE ANGIER, The New York Times, December 8, 2009
CIRCLING my way not long ago through the Vasily Kandinsky show now on display in the suitably spiral setting of the Guggenheim Museum, I came to one of the Russian master’s most illustrious, if misleadingly named, paintings: “Several Circles.”
Those “several” circles, I saw, were more like three dozen, and every one of them seemed to be rising from the canvas, buoyed by the shrewdly exuberant juxtapositioning of their different colors, sizes and apparent translucencies. I learned that, at around the time Kandinsky painted the work, in 1926, he had begun collecting scientific encyclopedias and journals; and as I stared at the canvas, a big, stupid smile plastered on my face, I thought of yeast cells budding, or a haloed blue sun and its candied satellite crew, or life itself escaping the careless primordial stew.
I also learned of Kandinsky’s growing love affair with the circle. The circle, he wrote, is “the most modest form, but asserts itself unconditionally.” It is “simultaneously stable and unstable,” “loud and soft,” “a single tension that carries countless tensions within it.” Kandinsky loved the circle so much that it finally supplanted in his visual imagination the primacy long claimed by an emblem of his Russian boyhood, the horse.
Quirkily enough, the artist’s life followed a circular form: He was born in December 1866, and he died the same month in 1944. This being December, I’d like to honor Kandinsky through his favorite geometry, by celebrating the circle and giving a cheer for the sphere. Life as we know it must be lived in the round, and the natural world abounds in circular objects at every scale we can scan. Let a heavenly body get big enough for gravity to weigh in, and you will have yourself a ball. Stars are giant, usually symmetrical balls of radiant gas, while the definition of both a planet like Jupiter and a plutoid like Pluto is a celestial object orbiting a star that is itself massive enough to be largely round.
On a more down-to-earth level, eyeballs live up to their name by being as round as marbles, and, like Jonathan Swift’s ditty about fleas upon fleas, those soulful orbs are inscribed with circular irises that in turn are pierced by circular pupils. Or think of the curved human breast and its bull’s-eye areola and nipple.
Our eggs and those of many other species are not egg-shaped at all but spherical, and when you see human eggs under a microscope they look like tranquil suns with Kandinsky coronas behind them. Raindrops start life in the clouds not with the pear-shaped contours of a cartoon teardrop, but as liquid globes, aggregates of water molecules that have condensed around specks of dust or salt and then mutually clung themselves into the rounded path of least resistance. Only as the raindrops fall do they lose their symmetry, their bottoms often flattening out while their tops stay rounded, a shape some have likened to a hamburger bun.
Sometimes roundness is purely a matter of physics. “The shape of any object represents the balance of two opposing forces,” explained Larry S. Liebovitch of the Center for Complex Systems and Brain Sciences at Florida Atlantic University. “You get things that are round when those forces are isotropic, that is, felt equally in all directions.”
In a star, gravity is pulling the mass of gas inward toward a central point, while pressure is pushing the gas outward, and the two competing forces reach a dynamic détente — “simultaneously stable and unstable,” you might say — in the form of a sphere. For a planet like Earth, gravity tugs the mostly molten rock in toward the core, but the rocks and their hostile electrons push back with equal vehemence. Plutoids are also sufficiently massive for gravity to overcome the stubbornness of rock and smooth out their personal lumps, although they may not be the gravitationally dominant bodies in their neighborhood
In precipitating clouds, water droplets are exceptionally sticky, as the lightly positive end of one water molecule seeks the lightly negative end of another. But, again, mutually hostile electrons put a limit on molecular intimacy, and the compromise conformation is shaped like a ball. “A sphere is the most compact way for an object to form itself,” said Denis Dutton, an evolutionary theorist at the University of Canterbury in New Zealand.
A sphere is also tough. For a given surface area, it’s stronger than virtually any other shape. If you want to make a secure container using the least amount of material, Dr. Liebovitch said, make that container round. “That’s why, when you cook a frankfurter, it always splits in the long direction,” he said, rather than along its circumference. The curved part has the tensile strength of a sphere, the long axis that of a rectangle: no contest.
The reliability of bubble wrap may help explain some of the round objects found among the living, where the shapes of body parts are assumed to have some relation to their purpose. Eggs are a valuable commodity in nature, and if a round package is the safest option, by all means, make them caviar round. Among many birds, of course, eggs are oval rather than round, a trait that biologists attribute to both the arduous passage the egg makes through the avian oviduct, and the fact that oval eggs roll in a circle rather than a straight line and thus are less likely to fall out of a nest.
Yet scientists admit that they don’t always understand the evolutionary pressures that sculpture a given carbon-based shape.
While studying the cornea at Columbia University College of Physicians and Surgeons, Dr. Liebovitch became curious about why eyeballs are round. “It seemed like their most salient feature,” he said. He explored the options. To aid in focusing? But only a small region of the retina is involved in focusing, he said, and the whole spherical casing seems superfluous to the optical needs of that foveal patch. To enable the eye to roll easily in the socket and dart this way and that? But birds and other animals with fixed eyes still have bulging round eyeballs. “It’s not really clear what the reason is,” he said.
And for speculative verve, nothing beats the assortment of hypotheses that have been put forth to explain the roundness of the human female breast. It’s a buttock mimic. It’s a convenient place to store fat for hard times. It’s a fertility signal, a youth signal, a health signal, a wealth symbol. Large breasts emphasize the woman’s comparatively small waist, which is really what men are interested in. As for me, I’m waiting for somebody to explain why a man’s well-developed bicep looks like a wandering breast.
Whatever the prompt, our round eyes are drawn to round things. Jeremy M. Wolfe of Harvard Medical School and his colleagues found that curvature was a basic feature we used while making a visual search. Maybe we are looking for faces, a new chance to schmooze.
Studying rhesus monkeys, Doris Tsao of the California Institute of Technology and her colleagues identified a set of brain cells that responded strongly to images of faces, monkey and otherwise. The only other sort of visual stimulus that aroused those face tracing neurons, Dr. Tsao said, were round objects — clocks, apples and the like. She suspects the results would be similar for humans. We make a fetish of faces. “If you have a round object with two spots in the middle,” she said, “that instantly attracts your attention.”
Or maybe the circle beckons not for its resemblance to human face but as a mark of human art. Dr. Dutton, author of “The Art Instinct,” pointed out that perfect shapes were exceedingly rare in nature. “Take a look at a billiard ball,” he said. “It’s impossible to imagine that nature threw that one up.” We are predisposed to recognize “human artifacture,” he said, and roundness can be a mark of our handiwork. When nature does play the meticulous Michelangelo, we are astonished.
“People come to see the Moeraki boulders of New Zealand,” he said, “and ooh and aah because they’re so amazingly spherical.”
Artists in turn have used the circle as shorthand for the divine: in mandalas, rose windows, the lotus pad of the Buddha, the halos of Christian saints. For Kandinsky, said Tracey Bashkoff, who curated the Guggenheim exhibition, the circle was part of a “cosmic language” and a link to a grander, more spiritual plane. A round of applause! We’ve looped back to Kandinsky again.

no subject
Date: 2009-12-11 12:53 am (UTC)